最近看到很多關于大數據方面的新聞,得出感悟:“大數據做的厲害是真得很牛,但學習的過程確實非常辛苦。”,看到很多培訓機構說開發類大數據的課程都是學習4個月,單項領域的比如數據庫開發3個月就夠了,這真的適合0基礎的人? 我想答案是適合0基礎的自律者,那么對于想從事大數據工作的求職者來說,如何根據自身條件進行職位選擇?今天,小編整理八種與“大數據”相關的熱門職位:
一、ETL研發
隨著數據種類的不斷增加,企業對數據整合專業人才的需求越來越旺盛。ETL開發者與不同的數據來源和組織打交道,從不同的源頭抽取數據,轉換并導入數據倉庫以滿足企業的需要。ETL研發,主要負責將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層后進行清洗、轉換、集成,最后加載到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。目前,ETL行業相對成熟,相關崗位的工作生命周期比較長,通常由內部員工和外包合同商之間通力完成。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。
二、Hadoop開發
Hadoop的核心是HDFS和MapReduce.HDFS提供了海量數據的存儲,MapReduce提供了對數據的計算。隨著數據集規模不斷增大,而傳統BI的數據處理成本過高,企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapReduce、Pig等的需求將持續增長。如今具備Hadoop框架經驗的技術人員是最搶手的大數據人才。
三、可視化工具開發
海量數據的分析是個大挑戰,而新型數據可視化工具如Spotifre,Qlikview和Tableau可以直觀高效地展示數據。可視化開發就是在可視開發工具提供的圖形用戶界面上,通過操作界面元素,由可視開發工具自動生成應用軟件。還可輕松跨越多個資源和層次連接您的所有數據,經過時間考驗,完全可擴展的,功能豐富全面的可視化組件庫為開發人員提供了功能完整并且簡單易用的組件集合,以用來構建極其豐富的用戶界面。過去,數據可視化屬于商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。
四、數據倉庫研究
數據倉庫是為企業所有級別的決策制定過程提供支持的所有類型數據的戰略集合。它是單個數據存儲,出于分析性報告和決策支持的目的而創建。為企業提供需要業務智能來指導業務流程改進和監視時間、成本、質量和控制。數據倉庫的專家熟悉Teradata、Neteeza和Exadata等公司的大數據一體機。能夠在這些一體機上完成數據集成、管理和性能優化等工作。
五、OLAP開發
隨著數據庫技術的發展和應用,數據庫存儲的數據量從20世紀80年代的兆(M)字節及千兆(G)字節過渡到現在的兆兆(T)字節和千兆兆(P)字節,同時,用戶的查詢需求也越來越復雜,涉及的已不僅是查詢或操縱一張關系表中的一條或幾條記錄,而且要對多張表中千萬條記錄的數據進行數據分析和信息綜合。聯機分析處理(OLAP)系統就負責解決此類海量數據處理的問題。OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然后創建數據訪問的用戶界面,提供高性能的預定義查詢功能。
六、數據科學研究
這一職位過去也被稱為數據架構研究,數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。因此,數據科學家首先應當具備優秀的溝通技能,能夠同時將數據分析結果解釋給IT部門和業務部門領導。總的來說,數據科學家是分析師、藝術家的合體,需要具備多種交叉科學和商業技能。
七、數據預測分析
營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值并預測未來的表現。
八、數據安全研究
數據安全這一職位,主要負責企業內部大型服務器、存儲、數據安全管理工作,并對網絡、信息安全項目進行規劃、設計和實施。數據安全研究員還需要具有較強的管理經驗,具備運維管理方面的知識和能力,對企業傳統業務有較深刻的理解,才能確保企業數據安全做到一絲不漏。
以上就是小編整理為大家整理八種與“大數據”相關的熱門職位,希望能夠幫助大家。同時希望0基礎的學員不要著急要結果,一步一個腳印,終有一天會迎來光明!